QSAR modeling of carcinogenic risk using discriminant analysis and topological molecular descriptors.
نویسندگان
چکیده
A discriminant analysis model is presented for carcinogenic risk. The data set is obtained from the two-year rodent study FDA/CDER database and was divided into a training set of 1022 organic compounds and an external validation test set of 50 compounds. The model is designed to use as a decision support tool for a defined decision threshold, and is thus a binary discrimination into "high risk" and "low risk" categories. The carcinogenic risk classification is based on the method for estimating human risk from two-year rodent studies developed at the FDA/CDER/ICSAS. The paradigm chosen for this model allows a straightforward risk analysis based on historic information, as well as the computation of coverage, probability and confidence metrics that can further qualify the computed result. The molecular structures were represented as MDL mol files. The molecular structure information was obtained as topological structure descriptors, including atom-type and group-type E-State and hydrogen E-State indices, molecular connectivity chi indices, topological polarity, and counts of molecular features. The MDL QSAR software computed all these descriptors. Furthermore, the discriminant analyses were all performed with the MDL QSAR software. The reported model is based on fifty-three descriptors, using the nonparametric normal kernel method and the Mahalanobis distance to determine proximity. The model performed very well on the fifty compounds of the test set, yielding the following statistics: 76% correctly classified "high risk" (carcinogenic) and 84% correctly classified as "low risk" (non-carcinogenic).
منابع مشابه
QSAR modeling of antimicrobial activity with some novel 1,2,4 triazole derivatives, comparison with experimental study
Our study performed upon an extended series of 28 compounds of 1,2,4-triazole derivatives that demonstrate substantial in vitro antimicrobial activities by serial plate dilution method, using quantitative structure-activity relationship (QSAR) methods that imply analysis of correlations and multiple linear regression (MLR); a significant collection of molecular descriptors was used e.g., Edge a...
متن کاملQuantitative structure-activity relationship (QSAR) study of CCR2b receptor inhibitors using SW-MLR and GA-MLR approaches
In this paper, the quantitative structure activity-relationship (QSAR) of the CCR2b receptor inhibitors was scrutinized. Firstly, the molecular descriptors were calculated using the Dragon package. Then, the stepwise multiple linear regressions (SW-MLR) and the genetic algorithm multiple linear regressions (GA-MLR) variable selection methods were subsequently employed to select and implement th...
متن کاملQSAR models to predict physico-chemical Properties of some barbiturate derivatives using molecular descriptors and genetic algorithm- multiple linear regressions
In this study the relationship between choosing appropriate descriptors by genetic algorithm to the Polarizability (POL), Molar Refractivity (MR) and Octanol/water Partition Coefficient (LogP) of barbiturates is studied. The chemical structures of the molecules were optimized using ab initio 6-31G basis set method and Polak-Ribiere algorithm with conjugated gradient within HyperChem 8.0 environ...
متن کاملQSPR Analysis with Curvilinear Regression Modeling and Topological Indices
Topological indices are the real number of a molecular structure obtained via molecular graph G. Topological indices are used for QSPR, QSAR and structural design in chemistry, nanotechnology, and pharmacology. Moreover, physicochemical properties such as the boiling point, the enthalpy of vaporization, and stability can be estimated by QSAR/QSPR models. In this study, the QSPR (Quantitative St...
متن کاملReview of “Statistical Modelling of Molecular Descriptors in QSAR/QSPR” by Matthias Dehmer, Kurt Varmuza, and Danail Bonchev
Book details Statistical Modelling of Molecular Descriptors in QSAR/ QSPR. Edited by Matthias Dehmer, Kurt Varmuza, and Danail Bonchev. Wiley-Blackwell, Weinheim, Germany, 2012. Print ISBN: 978-3-527-32434-7; ePDF ISBN: 9783-527-64502-2. The book is Volume 2 of the series Quantitative and Network Biology, Series Editors: M. Dehmer and F. Emmert-Streib. Hard copy US$ 159.95, Euros 129.99; E-book...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current drug discovery technologies
دوره 2 2 شماره
صفحات -
تاریخ انتشار 2005